
Week 8 - Friday



 What did we talk about last time?
 Finished TCP
 Network security
 CIA





Form Teams!







 "Secret writing"
 The art of encoding a message so that its meaning is hidden
 Cryptanalysis is breaking those codes
 Cryptography is a powerful tool for confidentiality because 

modern encryption methods make it almost impossible to 
read an encrypted message

 Cryptographic hash functions provide a tool for integrity
because they can make it obvious when a message has been 
changed



 Although cryptography provides tools for confidentiality and 
integrity, there's no clear cryptographic tool for availability

 In fact, cryptography often makes availability worse because 
encryption puts more strain on a system
 Making it more susceptible to various DoS attacks

 There's always tension between confidentiality, integrity, and 
availability

 Increasing confidentiality and integrity usually decreases 
availability



 Encryption is the process of taking a message and encoding it
 Decryption is the process of decoding the code back into a 

message
 A plaintext is a message before encryption
 A ciphertext is the message in encrypted form
 A key is an extra piece of information used in the encryption 

process



 A plaintext is M (sometimes P)
 A ciphertext is C
 The encryption function E(x) takes M and converts it into C
 E(M) = C

 The decryption function D(x) takes C and converts it into M
 D(C) = M

 We often specify encryption and decryption functions Ek(x) 
and Dk(x) specific to a key k



 A sender S wants to send a message to a recipient R
 If S gives the message to T who gives it to R, T is a transmission 

medium
 If an outsider O wants to access the message (to read, change, or 

destroy it), we call O an interceptor or intruder
 The fear is that O will cause one of four security failures:
 Blocking the message
 Intercepting the message
 Modifying the message
 Fabricating a false message



 The previous slide gives dry terminology
 Rather than use letters, a system popularized by Ron Rivest is 

to use Alice and Bob as the two parties communicating
 Carl or another "C" name can be used if three people are involved

 Trent is a trusted third party
 Eve is used for an evil user who often eavesdrops
 Mallory is used for a malicious user who is usually trying to 

modify messages



 Symmetric encryption is what you probably think of as 
encryption

 Two parties have a key which they use for both encrypting 
and decrypting messages
 The key is also known as a shared secret

 We have excellent symmetric encryption algorithms, of which 
AES is the most used

 But how do we distribute keys between parties who want to 
communicate secretly?



 Advanced Encryption Standard
 Symmetric block cipher designed to replace DES
 Block size of 128-bits
 Key sizes of 128, 192, and 256 bits
 Like the older (and deprecated) DES, has a number of rounds (10, 

12, or 14 depending on key size)
 Originally called Rijndael, after its Belgian inventors
 Competed with 14 other algorithms over a 5 year period before 

being selected by NIST
 No known attacks exist against good implementations of AES
 It should take more than a billion billion years to break an AES encryption
 Even quantum computers shouldn't change that much





 Sometimes, we need something different
 We want a public key that anyone can use to encrypt a 

message to Alice
 Alice has a private key that can decrypt such a message
 The public key can only encrypt messages; it cannot be used 

to decrypt messages
 Public key cryptography is enormously useful, since 

companies can publish their public key far and wide
 Anyone who wants to send them a secret message can do so
 No secret needs to be shared ahead of time



Key K

Encryption Decryption

Symmetric Key Cryptography

Plaintext M Ciphertext C Plaintext M

Encryption Key KE Decryption Key KD

Encryption Decryption

Public Key Cryptography

Plaintext M Ciphertext C Plaintext M



 RSA is the most commonly used public key cryptosystem
 Named for Rivest, Shamir, and Adleman
 Take a plaintext M converted to an integer

 Create an ciphertext C as follows:
C = Me mod n

 Decrypt C back into M as follows:
M = Cd mod n = (Me)d mod n = Med mod n



 Crazy number theory
 For RSA, the modulus n = p·q where p and q are two large 

(hundreds of digits) primes
 It's easy to compute d, the decryption exponent, if you know p

and q
 No one knows an efficient way to factor a large composite 

number
 However, quantum computers could make RSA much less safe





 What magic happens when you type your password into…
 Windows or Unix to log on?
 Amazon.com to make a purchase?
 A Mandalorian fan site so that you can post on the forums?

 A genie from the 8th dimension travels back in time and 
checks to see what password you originally created



 The password is checked against a file on a computer
 But, how safe is the whole process?
 The Mandalorian fan site may not be safe at all
 Amazon.com is complicated, much depends on the implementation 

of public key cryptography
 What about your Windows or Unix computer?



 Your computer needs to be able read the password file to 
check passwords

 But, even an administrator shouldn't be able to read 
everyone's passwords

 Hash functions to the rescue!



 A cryptographic (or one-way) hash function (also called a 
cryptographic checksum) takes a variable sized message M
and produces a fixed-size hash code H(M)

 Not the same as hash functions from data structures
 The hash code produced is also called a digest
 It can be used to provide authentication of both the integrity 

and the sender of a message
 It allows us to store some information about a message that 

an attacker cannot use to recover the message



 The pigeonhole principle says that if 
you try to put m items into n
categories, where m > n, then at least 
2 things will be in the same category

 Imagine that you have a 40,000 byte 
message and a 256-bit hash digest

 How does the pigeonhole principle 
apply?



 When two messages hash to the same value, this is called a 
collision

 Because of the pigeonhole principle, collisions are 
unavoidable

 The key feature we want from our hash functions is that 
collisions are difficult to predict



• Given a digest, should be hard to find a message 
that would produce it

• One-way property

Preimage
Resistance

• Given a message m, it should be hard to find a 
different message that has the same digest

Second Preimage
Resistance

• Should be hard to find any two messages that 
hash to the same digest (collision)

Collision 
Resistance



• A small change in input should correspond to a large change in 
outputAvalanching

• Hash function should work on a block of data of any sizeApplicability

• Output should be a fixed length Uniformity

• It should be fast to compute a digest in software and hardware
• No longer than retrieval from secondary storage

Speed



 Example (from 
Wikipedia) of 
significant changes in 
hash output with 
small input changes

 SHA-1



 Instead of storing the actual passwords, Windows and Unix 
machines store the hash of the passwords

 When someone logs on, the operating system hashes the 
password and compares it to the stored version

 No one gets to see your original password!
 Hash functions are also used for digital signatures



 Message Digest Algorithm 5
 Popular but outdated hashing algorithm
 Designed by Ron Rivest (of RSA fame)
 Digest size: 128 bits
 Security
 Completely broken
 Reasonable size attacks (232) exist to create two messages with the 

same hash value
 MD5 hashes are still commonly used to check to see if a 

download finished without error



 Secure Hash Algorithm
 Created by NIST
 SHA-0 was published in 1993, but it was replaced in 1995 by SHA-1
 The difference between the two is only a single bitwise rotation, but the NSA 

said it was important
 SHA-1 security
 Digest size: 160 bits
 Considered unsafe
 Theoretical attacks can run in 263 SHA-1 evaluations

 SHA-2 is a successor family of hash functions
 224, 256, 384, 512 bit digests
 Now the preferred hashing function
 Designed by the NSA



 SHA-3 (Keccak) uses a completely different form of hashing 
than SHA-0, SHA-1, and SHA-2

 Although the attacks on SHA-1 are expensive and there are no 
real attacks on SHA-2, the attacks on SHA-0 made people 
nervous about hash functions following the same design

 SHA-3 also allows for variable size digests, for added security
 224, 256, 384, and 512 are standard

 Either SHA-2 or SHA-3 is considered secure (for now)





 TLS
 Internet layer
 Link layer
 Wireless
 Start threads



 Finish Project 2
 Start on Assignment 5
 Read sections 5.6, 5.7, 6.1, and 6.2
 Have a great break!


	COMP 3400
	Last time
	Questions?
	Assignment 5
	Project 2
	Cryptography
	Cryptography
	Cryptography and availability
	Encryption and decryption
	Notation
	Terminology
	Terminology remix
	Symmetric key cryptography
	AES
	Public Key Cryptography
	Public key cryptography
	Symmetric vs. public key
	RSA Algorithm
	Why it's safe
	Cryptographic Hash Functions
	Where do passwords go?
	In reality…
	Catch-22
	Definition
	Pigeonhole principle
	Collisions
	Crucial properties
	Additional properties
	Avalanching in action
	Password dilemma resolved
	MD5
	SHA family
	SHA-3
	Upcoming
	Next time…
	Reminders

