
Week 8 - Friday



 What did we talk about last time?
 Finished TCP
 Network security
 CIA





Form Teams!







 "Secret writing"
 The art of encoding a message so that its meaning is hidden
 Cryptanalysis is breaking those codes
 Cryptography is a powerful tool for confidentiality because 

modern encryption methods make it almost impossible to 
read an encrypted message

 Cryptographic hash functions provide a tool for integrity
because they can make it obvious when a message has been 
changed



 Although cryptography provides tools for confidentiality and 
integrity, there's no clear cryptographic tool for availability

 In fact, cryptography often makes availability worse because 
encryption puts more strain on a system
 Making it more susceptible to various DoS attacks

 There's always tension between confidentiality, integrity, and 
availability

 Increasing confidentiality and integrity usually decreases 
availability



 Encryption is the process of taking a message and encoding it
 Decryption is the process of decoding the code back into a 

message
 A plaintext is a message before encryption
 A ciphertext is the message in encrypted form
 A key is an extra piece of information used in the encryption 

process



 A plaintext is M (sometimes P)
 A ciphertext is C
 The encryption function E(x) takes M and converts it into C
 E(M) = C

 The decryption function D(x) takes C and converts it into M
 D(C) = M

 We often specify encryption and decryption functions Ek(x) 
and Dk(x) specific to a key k



 A sender S wants to send a message to a recipient R
 If S gives the message to T who gives it to R, T is a transmission 

medium
 If an outsider O wants to access the message (to read, change, or 

destroy it), we call O an interceptor or intruder
 The fear is that O will cause one of four security failures:
 Blocking the message
 Intercepting the message
 Modifying the message
 Fabricating a false message



 The previous slide gives dry terminology
 Rather than use letters, a system popularized by Ron Rivest is 

to use Alice and Bob as the two parties communicating
 Carl or another "C" name can be used if three people are involved

 Trent is a trusted third party
 Eve is used for an evil user who often eavesdrops
 Mallory is used for a malicious user who is usually trying to 

modify messages



 Symmetric encryption is what you probably think of as 
encryption

 Two parties have a key which they use for both encrypting 
and decrypting messages
 The key is also known as a shared secret

 We have excellent symmetric encryption algorithms, of which 
AES is the most used

 But how do we distribute keys between parties who want to 
communicate secretly?



 Advanced Encryption Standard
 Symmetric block cipher designed to replace DES
 Block size of 128-bits
 Key sizes of 128, 192, and 256 bits
 Like the older (and deprecated) DES, has a number of rounds (10, 

12, or 14 depending on key size)
 Originally called Rijndael, after its Belgian inventors
 Competed with 14 other algorithms over a 5 year period before 

being selected by NIST
 No known attacks exist against good implementations of AES
 It should take more than a billion billion years to break an AES encryption
 Even quantum computers shouldn't change that much





 Sometimes, we need something different
 We want a public key that anyone can use to encrypt a 

message to Alice
 Alice has a private key that can decrypt such a message
 The public key can only encrypt messages; it cannot be used 

to decrypt messages
 Public key cryptography is enormously useful, since 

companies can publish their public key far and wide
 Anyone who wants to send them a secret message can do so
 No secret needs to be shared ahead of time



Key K
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 RSA is the most commonly used public key cryptosystem
 Named for Rivest, Shamir, and Adleman
 Take a plaintext M converted to an integer

 Create an ciphertext C as follows:
C = Me mod n

 Decrypt C back into M as follows:
M = Cd mod n = (Me)d mod n = Med mod n



 Crazy number theory
 For RSA, the modulus n = p·q where p and q are two large 

(hundreds of digits) primes
 It's easy to compute d, the decryption exponent, if you know p

and q
 No one knows an efficient way to factor a large composite 

number
 However, quantum computers could make RSA much less safe





 What magic happens when you type your password into…
 Windows or Unix to log on?
 Amazon.com to make a purchase?
 A Mandalorian fan site so that you can post on the forums?

 A genie from the 8th dimension travels back in time and 
checks to see what password you originally created



 The password is checked against a file on a computer
 But, how safe is the whole process?
 The Mandalorian fan site may not be safe at all
 Amazon.com is complicated, much depends on the implementation 

of public key cryptography
 What about your Windows or Unix computer?



 Your computer needs to be able read the password file to 
check passwords

 But, even an administrator shouldn't be able to read 
everyone's passwords

 Hash functions to the rescue!



 A cryptographic (or one-way) hash function (also called a 
cryptographic checksum) takes a variable sized message M
and produces a fixed-size hash code H(M)

 Not the same as hash functions from data structures
 The hash code produced is also called a digest
 It can be used to provide authentication of both the integrity 

and the sender of a message
 It allows us to store some information about a message that 

an attacker cannot use to recover the message



 The pigeonhole principle says that if 
you try to put m items into n
categories, where m > n, then at least 
2 things will be in the same category

 Imagine that you have a 40,000 byte 
message and a 256-bit hash digest

 How does the pigeonhole principle 
apply?



 When two messages hash to the same value, this is called a 
collision

 Because of the pigeonhole principle, collisions are 
unavoidable

 The key feature we want from our hash functions is that 
collisions are difficult to predict



• Given a digest, should be hard to find a message 
that would produce it

• One-way property

Preimage
Resistance

• Given a message m, it should be hard to find a 
different message that has the same digest

Second Preimage
Resistance

• Should be hard to find any two messages that 
hash to the same digest (collision)

Collision 
Resistance



• A small change in input should correspond to a large change in 
outputAvalanching

• Hash function should work on a block of data of any sizeApplicability

• Output should be a fixed length Uniformity

• It should be fast to compute a digest in software and hardware
• No longer than retrieval from secondary storage

Speed



 Example (from 
Wikipedia) of 
significant changes in 
hash output with 
small input changes

 SHA-1



 Instead of storing the actual passwords, Windows and Unix 
machines store the hash of the passwords

 When someone logs on, the operating system hashes the 
password and compares it to the stored version

 No one gets to see your original password!
 Hash functions are also used for digital signatures



 Message Digest Algorithm 5
 Popular but outdated hashing algorithm
 Designed by Ron Rivest (of RSA fame)
 Digest size: 128 bits
 Security
 Completely broken
 Reasonable size attacks (232) exist to create two messages with the 

same hash value
 MD5 hashes are still commonly used to check to see if a 

download finished without error



 Secure Hash Algorithm
 Created by NIST
 SHA-0 was published in 1993, but it was replaced in 1995 by SHA-1
 The difference between the two is only a single bitwise rotation, but the NSA 

said it was important
 SHA-1 security
 Digest size: 160 bits
 Considered unsafe
 Theoretical attacks can run in 263 SHA-1 evaluations

 SHA-2 is a successor family of hash functions
 224, 256, 384, 512 bit digests
 Now the preferred hashing function
 Designed by the NSA



 SHA-3 (Keccak) uses a completely different form of hashing 
than SHA-0, SHA-1, and SHA-2

 Although the attacks on SHA-1 are expensive and there are no 
real attacks on SHA-2, the attacks on SHA-0 made people 
nervous about hash functions following the same design

 SHA-3 also allows for variable size digests, for added security
 224, 256, 384, and 512 are standard

 Either SHA-2 or SHA-3 is considered secure (for now)





 TLS
 Internet layer
 Link layer
 Wireless
 Start threads



 Finish Project 2
 Start on Assignment 5
 Read sections 5.6, 5.7, 6.1, and 6.2
 Have a great break!
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